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6.D

ABSTRACT

In this paper, we study the asymptotic distributions of the functions "4.

of the occurrence/exposure rates of several groups of patients as well as

Berry-Esseen bound on the distribution function of the occurrence/exposure

rate. Asymptotic distributions of functions of the simple risk rates are e.-

also derived. The results are useful in not only medical research but also

in the area of reliability. -

Key words and phrases: Asymptotic distributions, medical research,

occurrence/exposure rate, reliability, risk rate.
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1. INTRODUCTION

In medical studies, it is of interest to study the association between

the occurrence of certain diseases and the exposure factors. Various measures

of risk of a disease are considered (e.g., Breslow and Day (1980), Howe (1985))

in the literature. One such measure is the ratio of the number of patients

died to the total number of individuals observed in a fixed time period. Using A

this measure, various authors have studied some of the statistical problems

connected with the risk rate. Another measure used in the literature for the

risk is the ratio of the number of persons died to the total number of years

exposed to risk. For surveys of some developments on the theory of occurrence/

exposure rates, the reader is referred to Berry (98 ) and Hoem (1976). The

main object of this paper is to study some problems connected with the occurrence/

exposure measure. Some results are also obtained on risk rates.

Suppose an experiment is conducted for a fixed period of time T and n

patients are observed during this period. Also, let X. denote the total time

- i-th patient is exposed to risk. Then, the risk measure considered in this
,T" .:.

paper is

R = Vn/Un k a,) (1.1)

where Un=YI+'".+Yn ,Vn =Z1 +' " + Zn and

NTIS CRAI
Y if Xi  T D c od TAB""

= - . ,a. d ..----if X> T j. _
% J

By . .- --

L i f X 1 >T .
A v j111 ab t Y co e s

I}-/i~.* I , -:
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The denominator in (1.1) is known as person-years.

In Section 2 of this paper, we establish asymptotic normality of a

function of Rn' In Section 3, we establish the Berry-Esseen bound

on the distribution of Rn. This bound is quite useful since it gives an

upper bound on the absolute value of the difference between the distribu-

tion functions of Rn and the normal variable with mean zero and variance
n/

one. The bound is of order c//n where c is a constant and n is the sample

size. The asymptotic distributions of the ratios of the measures in several

groups are given in Section 4. In Section 5, we consider the measure Vn/n

and give results analogous to those given in Sections 3 - 4 for the measure

R. The results of this paper are useful not only in medical research but

also in the area of reliability. For example, consider the situation when

n items of an equipment are under test for performance under stress over a

period of time T. A measure of reliability of the equipment is the ratio

of the number of items which did not fail to the total number of items under

test during the period of time T. It is also of interest to find the ratio

of the number of items which did not fail to X + . + Xn where Xi denotes1 n

the duration of the time i-th item is under test.

.
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2. ASYMPTOTIC NORMALITY OF THE OCCURRENCE/EXPOSURE RATE

Let p =P[X >T] 1-q. If p 1, then R O whereas R n /
nJI(X1 +...+ Xn) when p =0. Both of the above cases are simple and so we

deal the case when pc(O,j).
Using strong law of large numbers for i.i.d. sequence ,we have

(V n/n) q almost surely (a.s.) and

n.-~ ~ EY1  E(XI)I[X1 .IT] + Tp a.s.

as n - . Hence, R n -q/u a.s. Now, let W Uz q~ ,rq/u

and

In"' (R -r)

iT1 W.] (2.1)

Here 1W I is a sequence of bounded i.i.d. random variables with mean zero. -

dStrbu etdas nomal thrm me zer e and ainc is whereticll

2

ditie snormal with mean zero and variance where.

2

a (.)= 1Z-*j 22

Sic U U *. eoti ht i smttclydsrbtda
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Now, let f(.) denote a function which is continuously differentiable

for two times around r, say in (r-6 , r+6), 6 > 0. By Taylor's expansion,

if IRn-rI < 6/2, we obtain

In V f(R n)-f(r))::

= f(r)g n + 1 2n,({n '
;%

where n is a number between r and Rn. Because P is bounded in the

interval (r-6/2 , r+6/2), C tends to a normal variable in distribution

and P(IRn-r1>6/2) 0, and we have the following theorem.

THEOREM 1

Under the condition mentioned above,

r-n~.w (0-f(r 2
,j-((R )-f(r)).N(.(mrk/4

In practice, the asymptotic variance of [ (Rn)-f(r is unknown.

In such situations, we use the following approximate confidence interval on

f(r): 
, %_.

(f-n (R n)-f( r) 
< d a(f) 

"

where a(f) can be taken asN itepe'.

-U2
I-n- f R n  ) (YiZj-YjZi Y

which is a consistent estimate of jf'(r)ja/u and d is the upper 100a%

point of the normal distribution with mean zero and variance one.
V p.

'*%a..

., - .-.
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3. BERRY-ESSEEN BOUND FOR THE DISTRIBUTION OF THE OCCURRENCE/EXPOSURE RATE

Let

2 n

nn nn n iio 1 =1 .*'

Then, according to the result proved in previous section, n is

asymptotically distributed as normal with mean zero and variance one.

Let F denote the distribution function of nn and P that of the
nn

standard normal. In this section, we shall prove the following.

THEOREM 2

There exists a constant c such that

-F " = suDIFn(X) - t(x)l < cr/Vi i (3.1)

where D is the standard normal distribution function. In the sequel,

we need the following lenma.

LEMMA 1

Let {X Yn Zn be a sequence of random vectors with relation
in = Yn + Zn and let Fn, Gn  denote the distribution functions of Xn

and Yn respectively. If there exist constants ci, i = 1,2,3, such that
1) 1 JGn _ (PI < Cl/Y" n

. 2) P(IZnI>c 2 //) <c 3 //_-

then there exists a constant c4  such that .
C4V

IIFn - sil < c4 / -. ..

...- 
-•N. 

Ni- ., . .'.*%-. ' * o * % ..- -.. V - V* 4 -i. _, V .% % % % 1 * %% ".. . %".% - % , %
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For a proof of the above lemma, the reader is referred to X.R. Chen (1981).
.4.

Now, we turn to prove Theorem 2. Let

un + l (-(Yilu))+ A (3.2)

n "'+ 1A1

Then

nn  Sn + A; + A n+ 3. 3,) p-_

where

, n l i wi  (3.4) .:,r'n-a i=1 1--.

n a 1<i"
I Wi ( 1- Yi / U ) ,  (3.6)

An a i =1 . '

Ali

n= 1 W(1-Yi/u), (3.7)
.. 4

An$t1=~ (3.8)

'and m = n - i-, the summation Li runs over all possible values of i and j such

that 1<i <n, m+1<J.n, i~j or 1<J.n, m+1ci<n, i~j.

At first, we see that

_ -2

a: -2 n- JiEW (l.Yi/u)2 + 2EWiWS(I-Yi/u)(I-Yj/u)],1",

2 n1/ 2  2
"4< EW l" "

.< c//", (3.9)
I:. .:-:.:-'

-;.' -*-.' -.>zi '-.""".'.""' ,.;.' :r.:.,'.'.'., .z& . " . -'-* -.*':'..:'.."-':','.,,::
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where and in the sequel c denotes positive constant, but may take different

value at each appearance. Al so, for any c > a~ (iEW1(1-Y1 /u) 1+1 we have

n n
< PO W.(1-Y./u) -EW 1(1-Y /u)j1=1 1

h-1Var (W (1-y- /u)) c/ trW (3.10)

We now estimate A''. Define the event
nn

~Hoeffding inequality (see Hoeffding (1963)), we have

n( < 2 x{ 2n(11/2T)21. (3.11)

Let Ec denote the complement of the event E. When Ec is true, wenn n
have

i=1~~ 1. nk 2(2= 1 i
JA nI I k co2 ( i= (1-Y./u), n 1Y/

Thus

=P(IA'n /

<P(E )+ p(Ec, IS A I /rr
nn' n n



_<. P(E ) + P( 2(. Z (l _Yi/u))2t ____ W.i > /-
i~l -j- 1= -

<P(E) + P /U n n (...L J_ (.2n n (1-Y i "n (3.12),i- = a i =I

By Hoeffding inequality, we get

n il(1-Yi8/u))> Ln

_5 2 exp{- 2n(u n -3/8

< clv-- (3.13)

and

1( 1/4 
'U-

Wil > n /

<2 exp{- 2 )n1/4)21 c/,/ (3.14)

From (3.11) - (3.14), it follows that

""P ( Id''  "I >  1/vrn- c/vrn -

Applying Lemma 3.1,to prove Theorem 2, we only need to prove that

JIG - ll I <c/v, (3.15)

where G denotes the distribution function of Tn Sn + A, and Sn,

An were defined in (3.4), (3.5).

"-w

. o .... . . ...% U. .--" " " - "' ' " '%, " - - ' " " ' " " "% "-"% \" ' " " " ' " " ' ,: ' ." " ' " " " U " U '"'%" " --: " " " " ' " " Z ' '
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Now, write

fn(t) = E exp{itSn),

f n(t) = E exp{itTn I, j

" ~ ~a i = W i , -'

b = I(1-Yi /u)W ,

m
S 1 ai,

n 1 

- .

- n2 a,.

-.. a.. 4
Y' i=m+1

Then, we have '
itsn itAn  ......

Ifn(t)-fn(t)I = (Ee -I)1
itsn .2 2nitsnl""

ItI E 'ne  + 2IE(n  (3,16)

where 6n  is a complex function of tAn with oni <1. Hence, e n is

independent of Sn2. Thus

itSn . its 1 %
IE(A) _ene E(an) lEe 1n2 (3.17)

Now let

ital . .
V(t) Ee

Then we have ,.

IV (t) I.ex{ 1 t2 +2 Itt 3 Eta 13 1 (3.18)
ex -

4

a°! -. "- ,", 't,"- ,'.%,' * . ,,
" -

. , , , .. - . " . ."' ' ''*", . ,'.. . ,' % ',,". - .. '. -" ". ., . - *, ... - a_ .' .. . -, - J ,-..'. -. ,'' .
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(The proof of (3.18) can be found in Chapter 5 of Petrov's book (1975)).

Therefore there exists a constant 61 > 0, such that for any It! < 61,
1 2

Iv(t)I <exp(- 't 2 }. (3.19)

Hence for It! < 6 /-, we have

itSn2  [---n
lEe I < nv(t/vf)l[ v-n-]

< exp{- t2/4,7-} (3.20)

and

E exp{ it (Sn-( a1+a)/r-- }I."..-.

Iv(t/-W)In-2 < exp{- t2(n-2)/4n-

* 2
< exp{- t /51 for large n. (3.21) .N

Note

E )2 = 1 2E(An)2= m(m-1)[Eb 12 + 2Eb12b2 13

< c/n.

Hence from (3.17), we get for It I < 6 l-n- _

t 2  2 itSnI l t

I T (An)2ene < c(t2/n) exp{- t2/4- - 1. (3.22)

Now write

gn(t) = Ebl2 exp{it(al+a 2)//-) .

n, 11%

P.;
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116
,J. . ,

Since Eb12 = 0, Eb12aI = Eb12a2 = 0, we have

t2 2
*gn(t)! <- E(Ibl21)(al+a2)

< ct2/n. 
(3.23)

By (3.21), (3.23), we have for Itl _ n 6I  ,

iEsne  m m-i (t) E exp{it(Sn(ala

flo.',

Ct2n"I/2 expl- t2/51. (3.24) '-I,

From (3.16), (3.22) and (3.24), we get

if f(t)-fn(0) < c(ItL2e't/5 + - e'4-n-)  (3.25) ':.-

By lemma 1 in Chapter 5 of Petrov (1975), we have for It! < 2
r n-, 62 > 0,

2 3 2
if n) e-t /2 c tI e-t /8 (3.26)

Thus (3.25) and (3.26) yield for It! < 6 IT

n te /2 t  2/8 _ et2/4,-n (3.27)
-e < r(fL et +~ L-t7v 1

where 6 = min(61 , 2).  > 0. From (3.27), it follows that

1 Ij n(t ) -"e' t21  " ""

I
It!I <6y " t

-.. + nC..tet24 n- d

t2 -t2/8dte dt +. te 'dt

/nn
C

% 4- %
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13 .'

Here the estimate of the last integral can be obtained by making variable

transformation u = tn-1 4  Then using Berry-Esseen's basic inequality, Y7.
we prove (3.15). This completes the proof of Theorem 2.

.w

VI
1'.,'0

.-...*..-',

'-" 
~ " p '

. .'. ".-.

*,**" 'f ,, ., ., . .. .. . .. . . . .-



14

4. ASYMPTOTIC JOINT DISTRIBUTION OF FUNCTIONS OF OCCURRENCE/EXPOSURE RATES

Let X j ) , . . . , x j ) , (j=1,2,...,s) be a sample drawn from the j-thdUn * P AA;

population where XP ) denotes the observation on i-th individual in j-th

population. Also, let

if x}j < T

T otherwise

Iif XPi) <T

I 0 otherwise,

for j = 1,2,...,s and i=1,2,...,n. Now, let

R( j ) = v(/u (4.2).-.'

for j =1,2 ,... , where anust

/u(J) . v(as Z )  (4.2)

whre n , *.i, n3. =

.1

n n~ %

We know that "'

R(J) rj a.s. j = ,,.. s(4.3) "'.:;

n4

Let f(xx be a function which is continuously differentiable

for two times in a neighborhood of (rj,...,,rs). Suppose that V

n/n Xj < c, as n ,(4.4)..:,.'

where n =n 1 ,., n .
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Then

(f(R~l), - r r, r2 ,. .. ,r s )
*11 2 s

S+ aa.. t (k) + a (4.5)
=j nun j=k1 n k..

when R(I), R( 2 ) ,R ) falls in the neighborhood of (r 1 ,...,r) i-

nI  n2  n s __, s i

which f is differentiable. Here

ax= a(x1,...,x s) = (rz,...,r s) , j = 1,2,...,s, 

s h,

:x 2a = i sX
(k xjxk (x,...,xS) = (tl,...,t s ) , j,k = 1,2.,...,s

and (tl,...,t) is some point on the linear section joining R I .. nsR( s )

1' s n 9

and (rl,...,rs). Let B be a non-trivial closed ball with center
?.;

(r1 ,... ,r s ) which is contained in that neighborhood of (r 1 ,... ,rs). Then,

pBR(1) R(s) ) O..
n .1 ,ns

Since uq

Iakl N

for all j,k= 1,2,... ,s and some M when (R, n R)B, we obtain,..n 1 .. R n B, w obanI

P~ I. a.jkwi . n. k-I >  "

jlk=1 ik j.P E~

-< P((R(l'). R(s)) B) + P(1 (i) (k)I >k 0. .- ,

.. . .. F , . , .* , . . . . • , .~ .b.,.-, . t. . . .- - , , .
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Hence VV

-N(O 2 (4.6)

where -

2a 2 2 4

Uf = E y(J /"""j 1

qj= P(Xf j ) < T)

Also, using the same approach to prove Theorem 2, we can establish ..--
the Berry-Esseen Bound for the distribution of /- /( (R (1 )9 . 1,RS;) ),

'"""'"n - h,...

f \ nl n U

f(rl,..._ ,rs  . The details are omitted here.

An important special case for f is f(Xl,X ) = A1x2  In this case, <..-2 2 2j"2

f(R(I)l ,R (2)) = R(1)IR (2 )  is called the ratio of occurrence/exposure rates. ...."-

n. 1 E( 2 () n 2

R1/R (2) is denoted by A , and we have

1 12. ~

n1 ( "rlr2 N(O, cy2 ) (4.7)

wherenpTc.,

a 2 a2  2 -4 2 2 4. . .,fa O /uT + a 2 rde/utisa oitdhr

1~~~~ 2 2 n2 is caldtertoo2curec/xouerts

ni and we.h
S1 =1/r2  a2 r, 1r2

44

4

4.-
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REMARK
Note that R(2) may be zero. .;However, P(R 2 ) = 0) = 2 o , as n_+ =.

n may 2 2

Any way, the definition of RR for R(2  = 0 does not affect the limiting

n2

result for the distribution of RRn. However, for small sample problem, we

have to make an explicit distribution of RRn =G when Rn 0 0. Define

RRn =1 when R(1" = R"2 )= 0 and RR = w. Now let the commen density of
1 n " n2 n

x)be given by

)j exp{- ajx} if x > 0

1i (x)0 otherwise

and let pj = P[X 1 T for j =1,2. We have

P(,,R,=0) =n p(1-pn2

P(R=) = Pll2 (4.8)
p 1 p2

n-...n.
n 2 nI n 1.;

= P2 (1"P1 )

It is known (see Beyer, Keiding and Simonsen (1976)) that RU) has an atom at

n.
the orgin with a mass P1

3 and a density

nV (nj)Pn-f (x) T 1 j aT-kx'2exp{- aj(k-(n-k)Tx)+/x}- .
k=1 k.j.

uk[(k-(n 3 k)Tx)+/x] I x), (4.9)
, ([0, k/(n-k)T]

for 1,2, where I[a,b(X) is I or 0 according as x is in [a,b] or not. Hence,

the distribution of RRn , besides the three atoms given in (4.8), has a density

which can be computed from the following

f(x) = fl(xy)f2 (y)dy (4.10)_'

1 :6 20 _'

N; X "
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Now, l et

L i / _n - fi(R(1) ,... R s)) f (r

1 S

for i = 1,2,...k, (R . 9(s)) is a continuous twice-differentiable

function of R( ...,,s) around r We have proved earlier the

asymptotic normality of L 1. Following the same lines, it is easily seen

that the asymptotic joint distribution of L .. ,Lk is multivariate normal.

But the asymptotic covariance matrix of Li,...,Lk is isually known. We
will now construct approximate confidence intervals on fi(r 1,... ,rs) when

the covariance matrix C = (cit). of L1 ,...,Lk is non-singular, where

2 4.c t = Z a i  .ou--
j= ja t . j j j / u j 9

and

- fi(xi " " Xs)" '
Iai.j ax(x,...,x

s = (r,...,r
s  -.

In these situations, let C be a consistent estimate of C. Then L'C'L

is approximately distributed as chi-square with s degrees of freedom for .,.

large samples where L' = (L...,1 Using this, we obtain the following0..

approximate confidence intervals on linear combinations of fi(r 1,...,rs) ,

/- asf(R(') ...,R s)) - f(r ,... r < (ga aa) 1/2

for all nonnull vectors a:kxl where

and g is the upper 100a% point of the chi-square distribution with s

degrees of freedom. The above confidence intervals are useful in constructing

.. " .

W%5
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simultaneous confidence intervals on various ratios like

ri/r s (i=l,...,k-1)r, < j = 2,...,k)

We can also construct simultaneous confidence intervals on fi(r 1,...,rs)

using Bonferroni's inequality.

4-4

o * . 1*.

,4 . 4. _

'C'

I

. , ,. , . ,w € . ,€ ,'w"- , . -,. ., . a -. . - -. . .,2' -w -, . .. , -. . " - , •~ - "-
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5. INFERENCE ON SIMPLE RISK RATES

In this section, we compare the simple risk rates of different groups of

patients who are observed for a fixed period of T years and each group may

be subject to a different exposure factor. Here a simple risk rate of j-th

population is defined as the proportion of individuals in that population who

died during the period of observation. In this section, we use the same

notation as in the preceding sections.

The sample estimate of simple risk rate for j-th population is V =v(J)
. n.

Now, let fi(V ,...,V*) , (i=1,2,...,k), be a continuous twice differentiable
1 *

function of VI  ,Vs  around ql 9.. .3,q

Using Taylor's expansion, we obtain

* e

Li =r {fi(V1,. ,Vs ) - fi(ql , .  ,qs)}

w B aij /n/ B. a ijk nnkBiBk (5.1)

3= J J r jk1

af. a f
i --- ai, k (5.2)

weB- ,..V) n d qV)n) = jV=V),ad* .'
@fi I B~i k €

Veto between9 q and q (q n.q and ais som~e point on the linear

1 q S

section between q and V As n B is distributed as normal with

mean 0 and variance qjpj. So, when n, nl,...,n s  , the joint distri-

bution of L1,... L is multivariate normal with mean vector 0 and covariance
I. If %

matrix C = (ci) where =.(3

c =  aaXjqjpj • (5.3)

" " - " - " "." "'. "".-"-* ". '*" .- . .' . . . . . - .'. '- -,. " .
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Let C be a consistent estimate of C*. When C is non-singular and

n -, we can use the following approximate simultaneous confidence intervals

for the linear combinations of q1,...,qs by using the fact that V CV is

approximately distributed as chi-square with s- degrees of freedom-',.

.f * 1/2 C).T7 a' (V 1 " " '. V ) - f(ql "" q s) I -(h ,a'c a)'/ (5 .4) k +

where f(ql,...,q) (q...qs) ,..., f(q,...qs) and h is the

upper 100a% point of the chi-square distribution with k degrees of freedom.

Some special cases of fi(V 1 ,...,V*) are, V1/Vs , Vi/Vi+, etc. From

the results given above, it is easily seen that rn 1;n2 (12- (ql /q 2)) is

distributed normally with mean zero and variance a0  where
0p

2 2 2 4wn an (XIq q1p + X 2qq2P2)/q R2 = VI/V

when nI  and n tend to infinity. Following similar lines as in Section 3,

we can show that

w+ Fnl+n 2 - o i < cn"l1+n

where F is the distribution function of '1+n2 0 1 12 qanq2  d

o is the distribution function of the standard normal distribution.

We know that V follows the binomial distribution B(nj, q), j = 1,2,..
n..3,.

whatever the underlying distributions are. Hence, we have
nl~_ n2,--.

(1 q )1.1 ( - if x =  0, ;.'.'
. (l-qI)  l-q2)  , '..-1

" n2 if x =

P(R2= x) = ( 1 (1-ql)1) (l-q 2 ) x : N.
2- 1 2l2l

,2 q, ( n-q 2  otherwise. . . .

Here, the summation L-q runs over all possible values of k, and k2  such that

I k < nI , 1< k2 <n 2  and (kl/n 1) = x(k2/n2) and the term for k, = k2 = 0

appears only when x = 1.

%F** * *% . p* ~ 4 T.%.-.-
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If qj is small related to nj , j = 1,2, by the well-known Poisson

limit theorem, we know that Vn. is asymptotically distributed as Poisson

distribution P(x), where xj = njqj. Hence

S -2 "if. x 0,(1-e )if

Heete urnain I *userX al pssbl-vlus'f." n

P(ct2 = x)=n aneth t f = (- e0

kI  k2
"--"'

appeas e oe otherwise.

Here the summation runs over all possible values of kI  and k2  •

such that k1 > 1, k2 _ 1, kl/n, k2 x/n 2  and the term for kI  k2  0" -- "

appears only when x =I.- 4.,

% JI

• •,' 1

• . • '+
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